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Abstract
Antipredator behavior is known to have a strong effect on prey population dynamics. While there have been many studies of
antipredator behavior in population dynamic models, none have examined how antipredator behavior interacts with predator
foraging mode. To examine this process, we incorporated predator and prey velocities into a simple tritrophic food chain. In this
model, antipredator behavior allows prey to respond to predators by slowing their velocity in response to predator density. Prey
can slow their velocity to hide from predators, but this in turn reduces their ability to consume resources, creating a trade-off
between hiding and foraging. We examined the effects of both fast-moving Bmobile^ predators and slow-moving Bsit-and-wait^
predators on equilibrium prey density and amplitude of predator-prey cycles. We found that antipredator behavior was ineffective
against mobile predators, but it was very effective against sit-and-wait predators. Antipredator responses to sit-and-wait predators
reduced top-down control and allowed prey density to increase with increased carrying capacity. Furthermore, antipredator
responses to sit-and-wait predators eliminated population cycles within the community, whereas antipredator behavior had no
effect on population cycles within mobile predator communities. Therefore, our model demonstrates predator foraging mode
must be taken into account when examining predator-prey cycles.We discuss the potential implications of this model for invasive
species and for trophic cascades.
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Introduction

Predators are known to have strong consumptive and noncon-
sumptive effects on their prey (Werner and Peacor 2003;
Preisser et al. 2005; Peckarsky et al. 2008). Often noncon-
sumptive effects are mediated through changes in prey behav-
ior that lead to changes in prey foraging (Lima and Dill 1990;
Berger 2010). By adjusting behavior in response to predators,
prey can compensate for mortality risk by changing their

foraging intensity (Trussell et al. 2002), patch use (Orrock
et al. 2008; Bishop and Byers 2015; Davidson et al. 2015),
or landscape use (Matassa and Trussell 2011). These decisions
create trade-offs such that prey will increase their antipredator
behavior (e.g., hiding) and decrease their foraging or repro-
ductive behavior (Brown et al. 1999).

Variation in the degree of expression of antipredator behav-
ior could come about through predator foraging strategy
(Peckarsky et al. 2008; Schmitz 2008; Reynolds and Bruno
2013). Prey exhibit differential responses to alternative forag-
ing modes in systems as diverse as insects (Schmitz and Suttle
2001), marine amphipods (Reynolds and Bruno 2013), lizards
(Sherbrooke 2008), and birds (Billings et al. 2017). It may be
difficult for prey to predict the presence of mobile predators
based on the chemical (e.g., scat, urine) or physical
(e.g., burrows, markings) trace evidence they leave be-
hind (Schmitz and Suttle 2001; Preisser et al. 2007;
Kauffman et al. 2010), whereas slow-moving predators
that wait for prey to come near (sit-and-wait predators)
may leave higher density of trace evidence that could be
more reliable indicators of predator activity.
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Even though antipredator behavior has been the subject of
numerous studies (e.g., Ives and Dobson 1987; Sih 1987;
Abrams 1992), there has been comparatively little research
into the theoretical importance of predator foraging mode.
Models that allow migration between risky habitat and
predator-free refuges are typically conceptualized with one
predator foraging strategy (e.g., Sih 1992). Models that incor-
porate a basal resource trophic level (Ramos-Jiliberto 2003) or
varying antipredator effectiveness or cost (Ives and Dobson
1987; Ramos-Jiliberto et al. 2008) demonstrate that the costs
and benefits associated with the antipredator responses influ-
ence both community stability and equilibrium population
densities but do not consider multiple predator types.
Models of the relative value of mobile and sit-and-wait pred-
ator foraging mode indicate that the success of each foraging
mode depends on the relative speeds of predators and prey
(Werner and Anholt 1993; Scharf et al. 2006). However, only
two papers have linked foraging mode to analytical studies of
population dynamics. One used an individual based models
and found that prey exhibit little behavioral response when
predators are hard to predict (i.e., mobile predators; Luttbeg
and Trussell 2013). The other (Calcagno et al. 2011) phenom-
enologically modeled foraging mode by removing all anti-
predator response to mobile predators and found that sit-and-
wait predators promoted coexistence among basal resource
species. No study has looked at the role of predator foraging
mode in determining community cyclicity, and no study has
used a mechanistic framework for representing predator for-
aging mode in an analytical model.

Studies of population dynamics also indicate that predator
foragingmodemay be an important determinant of population
cycles. Analyses of the Global Population Dynamics Database
indicate that 17 to 29% of these populations undergo cycles
(Kendall et al. 1998; Louca and Doebeli 2015). Over half of
the approximately 400 cyclical populations in Louca and
Doebeli (2015) conservative analysis are aphid populations
with the remainder being plankton, insect, bird, fish, and
mammal populations. The aphid cycles are likely induced by
cyclical weather patterns or by highly mobile predators such
as parasitoid wasps or lady beetles (Leslie et al. 2009). Of the
remaining 200 cyclical populations, 26.5% of them are either
a hare or a lynx species and 25% were mobile mammalian
predators (foxes, mustelids, or coyotes) (Louca and Doebeli
2015). While these population cycles could have many poten-
tial mechanisms besides predator-prey forcing (e.g., demo-
graphic stochasticity), there were no sit-and-wait predators
in the list of species with cyclical dynamics, which suggests
that sit-and-wait predators may dampen or eliminate predator-
prey cycles.

We incorporated predator foraging mode and antipredator
behavior into a theoretical model in order to examine this
knowledge gap and to determine if it could explain the lack
of sit-and-wait predators in empirical patterns of cyclicity.

Using the same logic behind Dell et al. (2014) and Scharf
et al. (2006), we assigned small predator velocities to sit-and
wait predators and large predator velocities to mobile preda-
tors. We analyzed how a specific method of antipredator re-
sponse (hiding behavior) could influence community dynam-
ics. We model prey hiding behavior by explicitly describing
the prey’s mean movement rate and utilize a sensitivity pa-
rameter that controls the degree of prey response to predator
density (i.e., the degree of naïveté). Using this model we in-
vestigate (1) how antipredator response modifies cyclical dy-
namics in mobile predator– or sit-and-wait predator–
dominated communities and (2) whether antipredator re-
sponses to sit-and-wait predators lead to higher prey densities
relative to responses to mobile predators. Our model clearly
shows that even in the simplest cases, predator foraging mode
has an outsize effect on community dynamics. We discuss the
implications of these results on predator-prey dynamics and
invasion ecology.

Model

Wemodel a linear tritrophic systemwith moving predators (P)
attackingmoving consumers (C) and with consumers foraging
on continuously growing and stationary basal resource
(R) such as a plant. We refer to consumers as Bprey^
when describing predator-prey dynamics in the text. All
species are expressed in terms of species density (spe-
cies abundance per unit area). We chose to use a traditional
Rosenzweig-MacArthur model structure (Rosenzweig and
MacArthur 1963) for our analysis as this model structure is
known for its variety of oscillatory (stable limit cycles) and
chaotic dynamics (Hastings and Powell 1991; McCann and
Yodzis 1994):

dR
dt

¼ rR 1−
R
K

� �
−

αC Pð ÞR
1þ αC Pð ÞβCRð Þ C

dC
dt

¼ αC Pð ÞR
1þ αC Pð ÞβCRð Þ sCC−

αP Pð ÞC
1þ αP Pð ÞβPCð Þ P−mCC

dP
dt

¼ αP Pð ÞC
1þ αP Pð ÞβPCð Þ sPP−mPP

ð1Þ

In this model, r is the intrinsic growth rate of the resource,
K is the carrying capacity of the resource, si represents the
conversion factor of consumed biomass into biomass of spe-
cies i, andmi represents the density-independent mortality rate
of species i. Both predators and consumers have Holling
(1959) type II functional response such that αi(P) represents
the predator-dependent encounter rate of species i with its
food source, and βi is the handling time of species i on its food
source. Dimensions for all parameters are given in Table 1 (for
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brevity, dimensions are not included when discussing param-
eter values in the text). See Appendix A in the supplementary
material for full discussion of model assumptions.

Recently Ross and Winterhalder (2015) developed a two-
dimensional predator-prey encounter rate model with random
movement of prey and predators. In our case, if predator and
consumer movement velocities follow a two-dimensional
Maxwell’s distribution (see Skellam 1958), then the attack rate
(α) can be represented by

αP Pð Þ ¼ DP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ v2

p
ð2Þ

αC ¼ DCv ð3Þ

Equation 2 makes the attack rate of the predators (P) on the
consumers (C) an explicit function of the mean predator ve-
locity (w), the mean prey velocity (v), and the effective forag-
ing diameter of the predator (DP). The effective foraging di-
ameter (Di) represents the distance at which food items can be
detected. Both Eqs. 2 and 3 assume that all food items the
forager encounters within that diameter are successfully eaten.
Similar models have been used to examine the relative success
of mobile predator and sit-and-wait predator strategies
(Werner and Anholt 1993; Scharf et al. 2006). We chose to
examine the simplest case possible in which consumers cannot
escape encounters with predators and in which predator attack
rates increase as mean consumer velocity increases. In short,
the random distribution of predators implies that running from
one predator will in turn lead to an encounter with another
predator. Foragers (either predators or consumers) benefit
from increasing velocity by increasing their foraging rate via
Eq. 2 (for predators) or Eq. 3 (for consumers). On the other

hand, increasing velocity hinders consumers by simultaneous-
ly increasing their encounter rate with predators (Eq. 2).

We can incorporate antipredator behavior into this model
by allowing mean consumer velocity to respond to predator
density. We assume that the mean consumer velocity (v) is a
decreasing function of P:

v Pð Þ ¼ γe−θP ð4Þ

In this case, γ represents the maximum mean foraging
velocity of the consumer (the velocity that occurs in the
absence of the predator) and θ is the consumer’s anti-
predator sensitivity. Because the velocity of the consum-
er depends on the dynamic quantity P, γ sets the upper
bound on the consumer’s potential movement rates. We
interpret this reduction in mean foraging velocity as an
increase in consumer hiding behavior that simultaneous-
ly reduces encounter rates with predators (Eq. 2) and
reduces their foraging rate on resources (Eq. 3).

Antipredator sensitivity is the key parameter in this model
and represents the consumer’s behavioral change to in-
creases in predators. Generally, θ would likely be neg-
ligible or zero for naïve consumers, while θ would likely
be nonzero for experienced consumers. Mathematically, θ is
the negative natural log of the proportional reduction in
velocity at unit P density. For example, if θ = − ln(0.5) =
0.693, then average consumer velocity is reduced by 50%
when P = 1. Importantly, because of the dimensional as-
sumptions of this model (Table 1), P = 1 signifies that
there is on average one predator per unit area (e.g.,
km2) and that this predator moves w units of length
per unit time (e.g., km/day).

Table 1 Parameter definitions
used for investigating how
predator and prey velocity
influence equilibrium densities

Description Parameter Value Units

Intrinsic rate of growth r 2.5 Time−1

Carrying capacity K 4 R density × length−2

Prey detection diameter DC 0.5 Length

Predator detection diameter DP 0.25 Length

Handling time of prey on resource βC 0.1 Time × R density−1

Handling time of predator on prey βP 0.5 Time ×C density−1

Density-independent mortality of prey mC 0.1 Time−1

Density-independent mortality of predator mP 0.1 Time−1

Prey density conversion factor sc 0.2 R density−1

Predator density conversion factor sP 0.2 C density−1

Prey movement velocity γ 0–5 Length × time−1

Predator movement velocity w 0–5 Length × time−1

Antipredator sensitivity θ 0, 0.69, 5 P density−1 × length2

Predator density P Dynamic P abundance × area−1

Prey density C Dynamic C abundance × area−1

Resource density R Dynamic R abundance × area−1
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When we substitute Eqs. 2, 3, and 4 into Eq. 1, our full
model becomes

dR
dt

¼ rR 1−
R
K

� �
−

DCγe−θPR
1þ DCγe−θPβCRð Þ C

dC
dt

¼ DCγe−θPR
1þ DCγe−θPβCRð Þ sCC−

DP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ γ2e−2θP

p
C

1þ DP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ γ2e−2θP

p
βPC

� � P−mCC

dP
dt

¼ DP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ γ2e−2θP

p
C

1þ DP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ γ2e−2θP

p
βPC

� � sPP−mPP
ð5Þ

See Appendix B in the supplementary material for a non-
dimensional version of this model.

Model analysis

Antipredator behavior influence on community
dynamics

Our first analysis addressed the influence of predator foraging
mode on the transition from stable point equilibria to
stable limit cycles. Using a computational bifurcation
analysis, we determined how predator and prey veloci-
ties modify the interaction between antipredator sensitiv-
ity (θ) and productivity metrics (K or r). To examine
the effect of these factors on community stability, we
used the differential equation solver lsoda from the R
package deSolve (Soetaert et al. 2010).

We present two different community modes, one in which
predators are much slower than prey (w = 0.71, γ = 3.5) simi-
lar to a sit-and-wait predator and one in which predators are
marginally faster than prey (w = 1.79, γ = 1.75) similar to a
mobile predator. Note that we are simultaneously changing
both predator and prey velocities in these simulations; there-
fore, these simulations do not show causality. To illustrate that
predator velocity is the casual factor in this model, we con-
ducted a third simulation that uses the predator velocity from
the sit-and-wait predator community (w = 0.71) with the
consumer velocity from the mobile predator community
(γ = 1.75; see Appendix C in the supplementary material).
The values chosen for presentation in the main text exemplify
the differences between foragingmodes and hold the predator-
prey encounter rate constant across simulations when prey
have no antipredator behavior (αP = 0.625 for both
simulations, Eq. 2). Each mode was simulated along a gradi-
ent of increasing K ranging from 0.1 to 10.0 (see Appendix D
in the supplementary material for r simulations).

We determined equilibrium dynamics by allowing each
simulation to run for 70,000 time steps with the last 20,000
time steps examined for stable point equilibria. Each velocity

simulation was run with θ set to either 0, 0.69, or 5. These
sensitivity values correspond to average prey velocities of 0%,
49.8%, or 99.3% less than γ, whenP = 1. The coarse grain of θ
levels is sufficient for this analysis because as will be shown
below, there is no optimal value of θ. Other parameters were
set according to Table 1. The values of mi, si, and βC
were chosen to fall within the range of biologically estimated
parameters (see McCann and Yodzis 1994 for density-
independent mortality; Trussell et al. 2011 for energetic effi-
ciency; and Johnson and Amarasekare 2015 for handling
time). However, the parameters within this range were chosen
arbitrarily to illustrate the potential dynamics of this system.
We chose values of βP that are near the maximum of handling
times observed (Johnson and Amarasekare 2015) but are large
enough to induce cyclical dynamics. A small βP eliminated
cyclical dynamics but did not alter the patterns of consumer
density (not shown). We chose values of r, DP, DC, w, and γ
that allowed all species to persist indefinitely in this parameter
space when antipredator behavior is absent. We constructed
bifurcation plots by plotting the stable equilibria or stable limit
cycle range for each K value.

Fine-scale analysis of antipredator sensitivity

Our second analysis used a fine gradient of antipredator sen-
sitivity to examine where the Hopf bifurcation occurs along
the gradient of carrying capacity. Again we compared whether
these effects differ between sit-and-wait predators (w = 0.71,
γ = 3.5) and mobile predators (w = 1.79, γ = 1.75). We esti-
mated model equilibrium along a gradient of K (from 0 to 10)
and θ (from 0 to 5) using the multiroot function in the R
package rootSolve (Soetaert 2009; Soetaert and Herman
2009; R Core Team 2017), all other parameters were set to
Table 1. This function uses the Newton-Raphson method to
calculate equilibrium values given the system of equations.
After numerically calculating an equilibrium, we then deter-
mined if each equilibrium was stable or unstable by calculat-
ing the leading eigenvalue of the Jacobian matrix (see
Appendix E in the supplementary material) using the
eigen function in R. We considered parameter combina-
tions with negative leading eigenvalues (point equilibria)
to be stable and all others to be unstable. A large pro-
portion of our eigenvalues had nonzero imaginary parts,
but we considered these eigenvalues to be stable as long
as the real part of the leading eigenvalue was negative.
These criteria mean that both chaotic dynamics and sta-
ble limit cycles are considered to be Bunstable.^ By
using a fine gradient of θ, we could better determine
if there are any nonlinearities where the Hopf bifurcation
occurred along the K gradient. We considered increasing
values of θ to be stabilizing (destabilizing) by determining
whether an increase in θ led to greater (fewer) stable equilibria
along the K gradient.
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The effect of predator and prey velocity on prey
density

Based on the model structure, we expected that without anti-
predator behavior, both predator and prey velocities would
have equal influence on final equilibrium prey densities.
Any increase in predator or prey velocity should increase prey
mortality and reduce equilibrium prey density. However, by
incorporating antipredator behavior, the relative importance of
each velocity parameter could be skewed. To determine how
predator foraging mode influenced this model, we calculated
expected equilibrium values across a fine gradient of predator
and prey velocities using the multiroot function.

We varied predator velocities and preymaximum velocities
from 0 to 5 for both species and set θ to 0, 0.69, or 5. These
parameter values were chosen to examine the full range of
effects of antipredator behavior on model dynamics. Other
parameters were set according to Table 1. Like in analysis 2,
we numerically estimated each equilibrium and determined if
they were stable or unstable using the leading eigenvalue of
the Jacobian matrix. As above, we considered equilibria to be
stable if the leading eigenvalue was negative. Thus, our focus
was only on point equilibria rather than stable limit cycles.

Model results

Antipredator behavior influence on community
dynamics

For all velocity simulations using either sessile (w= 0, not
shown) or sit-and-wait predators (e.g., w = 0.71, Fig. 1), anti-
predator sensitivity had strong effects on both community
stability and relationship between prey density and resource
growth rates. As antipredator sensitivity increased to moder-
ately high levels (Fig. 1b, e, h), stable limit cycles collapsed
into stable equilibria over the examined parameter range (e.g.,
Fig. 1a vs. Fig. 1b). In communities with sit-and-wait preda-
tors, a nonzero antipredator sensitivity allowed prey densities
to increase with increasing K (compare Fig. 1d with Fig. 1e, f)
or r (Appendix D in the supplementary material). Thus,
adding antipredator behavior to a sit-and-wait predator com-
munity effectively releases prey from top-down control and
allows prey to capture increases in resource productivity. In
contrast, when there was no antipredator behavior or when the
community was dominated by mobile predators, predators
were able to capture all of the increases in productivity.

Model simulations with mobile predators exhibited stable
limit cycles throughout the analysis, even when antipredator
behavior was present (Fig. 2). Fast moving predators alone
were sufficient to induce cycles because in these cases, even
if prey were moving faster than predators, predator attack rates
(and thus predator population growth rates) remain large no

matter the behavioral adjustment. Additionally, when preda-
tors move faster than consumers (w > γ), the relationship be-
tween resource productivity and consumer density becomes a
horizontal line with all increases in productivity (compare
Fig. 2d with Fig. 2e, f) captured by the predator, con-
sistent with top-down control.

We attribute the positive effect of K on prey equilibrium
density to the relationship between per-predator predation
rates and antipredator sensitivity. Because of this model, when
we solve for the equilibrium per-predator predation rate (i.e.,
functional response) in Eq. 5, we find that it is always set to
mP/sP, giving us

DP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ γ2e−2θP

p
C

1þ DP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ γ2e−2θP

p
βPC

� � ¼ mP

sP
ð6Þ

We can use this equation to solve for consumer density (C)
at equilibrium and to determine how consumer density is re-
lated to both predator density and antipredator sensitivity:

C ¼ mP

DP sP−mPβPð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ γ2e−2θP

p ð7Þ

which has an inflection point at

P ¼
ln

γ2

2w2

� �

2θ
ð8Þ

From Eq. 6, we find that equilibrium consumer densities
will increase if equilibrium predator density (P) or antipreda-
tor sensitivity (θ) increases or if predator velocity (w) de-
creases. Given that larger values of K will lead to larger equi-
librium predator densities, the equilibrium consumer density
will increase withK only if antipredator sensitivity is nonzero.
If predator velocity (w) is less than γffiffi

2
p , then the inflection point

occurs at positive values of predator density, which allows
consumers to increase with K until predator densities reach
the inflection point (e.g., Fig. 3b). However, if w > γffiffi

2
p , then

an increase in K will only have marginal effects on consumer
densities (Fig. 3d). Figure 3 illustrates how Eq. 6 predicts the
results of the two simulations in the bifurcation analysis.
Ultimately, when w > γffiffi

2
p , we expect that the community will

behave as a mobile predator–dominated community, with
strong top-down control and little to no relationship between
prey density and carrying capacity (compare Fig. 3a, b with
Fig. 3c, d). To emphasize this point, when predator velocity is
below the γffiffi

2
p threshold, consumers can capture a portion of

any increase in productivity and the community is partially
dominated by bottom-up forcing. This effect disappears once
the predator velocity increases above the γffiffi

2
p threshold.
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Unlike changes in consumer density, antipredator sensitivity
did not modify the effect of increasing K on predators (P) or
resources (R). Generally, allowing prey to respond to predators
has a negative effect on predators but a positive effect on re-
sources. However, antipredator sensitivity has a relatively weak
effect on resource density. In both the sit-and-wait predator case

(Fig. 1g–i) and mobile predator case (Fig. 2g–i), increases in
antipredator sensitivity lead to only marginal increases in re-
sources (compare panel g with h and i in Figs. 1 and 2). This
may partially be explained by the fact that when antipredator
sensitivity is large, consumers have relatively small consump-
tion rates of resources at equilibrium.

Fig. 1 Bifurcation plots showing equilibria when communities are
dominated by sit-and-wait predators (w = 0.71, γ = 3.5), θ is as shown
(either 0, 0.69, or 5), and all other variables are set to Table 1. When
predator velocity is small, increases in carrying capacity (K) lead to
increases in prey density (panels d–f) when antipredator sensitivity (θ)
is nonzero. Predator density (panels a–c) declines with increasing θ. At

moderate θ values (θ = 0.69), predator density remains high, but prey
density (panels d-f) exhibits weakened top-down control (panels e and
f). Resources continually increased with K (panels g–i), but the rate of
increase depended on θ. Small θ led to resource densities that were
slightly smaller than the θ = 0 case, while large θ led to densities
slightly larger. Overall the effect of θ on resources seemed minor
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Fine-scale analysis of antipredator sensitivity

The location of the Hopf bifurcation along the K and θ gradients
depended on predator foraging mode. In the sit-and-wait preda-
tor community, increased antipredator behavior rapidly eliminat-
ed stable limit cycles in the community and there was no

indication of cycles at high sensitivity (θ>3) values (Fig. 4a).
However, in the mobile predator community, the effect of anti-
predator behavior did not always eliminate cycles (see Fig. 4b).
Generally, antipredator behavior caused the Hopf bifurcation to
occur at larger K values until a critical sensitivity value was
reached (θ ≈ 0.6), after which further increases in θ shifted this

Fig. 2 Bifurcation plots showing equilibria when predators are mobile
(w = 1.79, γ = 1.75), θ is as shown (either 0, 0.69, or 5), and all other
variables are set to Table 1. Unlike Fig. 1, prey (panels d–f) exhibit
only slight evidence for reduced top-down control. However, even
though top-down control is strong, predators (panels a–c) have the

reduced equilibrium densities, indicating that antipredator behavior
continues to have a negative effect on predators. As in Fig. 1, resource
density (panels g–i) increased marginally with θ but to a lesser extent
than that in the sit-and-wait predator case, again supporting top-down
control
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transition point to smaller and smaller K values. In other words,
above the critical sensitivity value, further increases in antipred-
ator sensitivity make the community more likely to exhibit cy-
clical dynamics. This result was largely explained by the fact that

at high sensitivities, very small changes in predator density led to
large changes in prey velocity. See Appendix B in the supple-
mentary material for further analysis of this question using the
nondimensional version of the model.

Fig. 3 Per-predator predation rate on the prey as a function of predator
and prey density. Panels a and b represent a relatively slow, sit-and-wait
predator (w = 0.71, γ = 3.5), and panels c and d represent a relatively
mobile predator (w = 1.79, γ = 1.75). Panels a and c are the no behavior
case, in which per-predator predation depends only on the static
parameters; therefore, Eq. 7 (black line) is horizontal; changes in P
(caused by changes in K) lead to no change in C. The orange dots are
the trajectory of the model in the predator-prey space when K = 3, and the
black dots represent the trajectory when K = 5. The larger K values shift
the final equilibrium to larger predator densities. Panels b and d contrast

this with strong antipredator behavior by setting θ = 5. Equation 7 is now
nonlinear and dependent on P as well as the static parameters; thus, C
increases when P increases. Here, we have added the extreme value of
K = 10 (gray dots) to further illustrate how increasing K shifts the final
equilibrium along Eq. 7. Panels a and b show a large nonlinear shift in the
Eq. 7 curve (and thus a large increase in prey density) whereas panels c
and d show only a minor shift in the Eq. 7 curve (and thus a minor
increase in prey density). In all graphs, warmer colors represent greater
per-predator predation rates (left-hand side of Eq. 6). All other parameters
besides K are set to Table 1
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The effect of predator and prey velocity on prey
density

When θ = 0 (i.e., no antipredator behavior), both predator and
prey velocities had equal influence on equilibrium prey density
(see Fig. 5a). By increasing antipredator sensitivity, we increase
the effect of predator velocity and reduce the effect of prey
velocity. When antipredator sensitivity is large (Fig. 5c), the
chosen value of prey velocity (γ) becomes unimportant since
prey are moving slowly and velocities close to γ rarely occur.
Regardless of antipredator sensitivity, the highest prey densities
occurred when both prey and predator average velocity was
low, when the predator attack rate would be the smallest (the
bottom left corner of each panel in Fig. 5). Importantly, nonzero
antipredator sensitivities allowed prey densities to remain high
through a range of prey velocities (Fig. 5b, c).

As expected from our previous results, cyclicity was also
influenced by antipredator sensitivity. After a brief decline at
small prey velocities, the relationship between point equilibria
and prey velocity shifts from unimodal (Fig. 5a) to monotonic
(Fig. 5c) as antipredator sensitivity increases. However, the
overall number of stable point equilibria in the parameter space
only marginally decreased (compare the area of plotted values
in Fig. 5a to Fig. 5c). Interestingly, these responses appear to be
directly related to the weakening of the relative influence of
prey velocity on prey density noted above.

Discussion

Our analysis is the first to show that a mechanistic change in
predator foraging mode can control the effect of antipredator
behavior. Recall that in our model, predators induce prey re-
sponses by reducing the average movement rate of prey
through the environment. Prey reduce their encounter rate
with predators (i.e., reduce their mortality), but at the same
time prey reduce their foraging (i.e., reduce their growth).
Therefore, for a given level of predator density, antipredator
behavior has a positive direct effect on prey and an indirect
positive effect on resources. In this model, predator foraging
mode constrains the benefits of antipredator behavior by lim-
iting howmuch control prey have on their ownmortality rates.

Simulations with sit-and-wait predators had larger equilib-
rium prey densities (Fig. 1f) and more stable point equilibria
(Fig. 1b, e, h), whereas simulations with mobile predators had
smaller prey densities (Fig. 2f), more stable limit cycles, and
greater likelihood of population cycles (Fig. 2b, e, h). Large
antipredator sensitivity (θ) in sit-and-wait predator–dominated
communities removed cyclicity from the model (Fig. 1c, f, i)
whereas large θ in mobile predator–communities enhanced
cyclicity and cycle amplitude (Fig. 2c, f, i).

Our analysis is also the first to link predator-prey cycles to
predator foraging mode. The difference in cycles between
communities with sit-and-wait predators and communities

Fig. 4 Regions of stability for a sit-and-wait predators (w = 0.71, γ = 3.5)
and b mobile predators (w = 1.79, γ = 1.75) and all other parameters are
set to Table 1. Contour lines are the resilience value of the Jacobian
matrix, the absolute value of the maximum real eigenvalue. Green
shading indicates where the leading eigenvalue is negative (point
equilibria), and gray shading indicates where the leading eigenvalue is

positive (stable limit cycles or chaotic fluctuations). The boundary
between the green and gray shading represents where the Hopf
bifurcation occurs. In the mobile predator case, increasing θ shifts the
Hopf bifurcation to large values of K until about θ = 0.6, at which larger
values of θ shift the bifurcation point to smaller values of K
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with mobile predators can be explained by the population
growth rates of the predators. Given the same prey, mobile
predators are more successful at consuming prey, have a
higher population growth rate, and are more likely to create
cycles. When prey are able to respond to predator density, this
lowers the predator population growth rate and can dampen or

remove cycles, especially in the case of both sit-and-wait and
mobile predators. Essentially, mobile predators can overcome
simple changes in prey movement rates if they cover enough
ground in their search patterns. A more complex model with
an explicit predator avoidance or refuge habitat for prey may
result in a greater reduction in cyclicity. Therefore, our model

Fig. 5 Equilibrium prey density for stable solutions in the cases where a
θ = 0, b θ = 0.69, and c θ = 5. Isoclines are labeled by the prey density
unit, and warmer colors indicate higher prey densities. Increases in θ lead

to prey density isoclines that are elongated relative to the x-axis, thereby
increasing the relative importance of w
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would be most appropriate in replicating communities that
occur in habitats with refugia that can be penetrated by pred-
ators given enough effort, such as hawks searching for mice in
a temperate grassland.

In our simulations, we found that increasing antipredator
sensitivity increased cyclicity in communities dominated by
mobile predators (Fig. 4b). Previous models have shown that
large antipredator response can be destabilizing (Ramos-
Jiliberto et al. 2008), but our study indicates that destabiliza-
tion (cyclicity in our case) is linked to predator foraging be-
havior. Mobile predators are more likely to cause oscillations
because prey are strongly responding to very small changes in
predator densities. In the sit-and-wait predator case, any de-
stabilization caused by rapid prey responses is much weaker
than the stabilizing force that antipredator behavior induces,
increasing θ quickly leads to regions of only point equilibria
under the parameter range examined (Fig. 4a). Furthermore,
while not shown in our analysis, some of our simulations
found that the presence of antipredator behavior can replace
chaotic dynamics with stable limit cycles in the sit-and-wait
predator case.

Destabilization creates a complication when trying to de-
termine the optimal level of antipredator behavior. Recall that
our equilibrium analysis (Eqs. 6 and 7) predicts that increasing
θwill increase prey density, although with diminishing returns
(e.g., Fig. 3). This analysis alone would indicate that prey
should continue to exhibit maximal antipredator behavior un-
til the predator goes extinct. However, the destabilization in-
herent to the dynamic simulations indicates that there is a limit
to the effectiveness of antipredator behavior in mobile
predator–dominated communities. Even if the average prey
density is increasing with θ, prey become more likely to go
extinct because of the high probability of low densities in
large-amplitude cycles. Understanding how cyclical dynamics
and average prey density interact will be an important aspect
for future research into the optimal value of antipredator
behavior.

Predator foraging mode and top-down control

One of the more intriguing aspects of this model is that in-
creases in productivity (K or r) lead to changes in prey popu-
lation density when prey respond to sit-and-wait predators.
Previous analyses indicate that when antipredator behavior is
strong, increases in prey defenses reduce per capita predation
rates and increase total prey biomass (Vos et al. 2004), a sim-
ilar effect occurs here (Fig. 3). Under sit-and-wait predator–
dominated communities, increases in antipredator sensitivity
allow prey populations to grow in a bottom-up-structured
manner because predators become self-inhibiting. When θ is
nonzero, increases in prey density are no longer perfectly cap-
tured by the predator because the per-predator predation rate
declines with predator density. Thus, in order to maintain a

constant per-predator predation rate (i.e., at equilibrium), in-
creases in predator density require increases in prey density.

Although this model behavior has been seen in models of
inducible defenses (Vos et al. 2004), it is seen in classical
Rosenzweig-MacArthur models. The basic structure of the
Rosenzweig-MacArthur model implies that communities are
organized from the top-down, with a distinct pattern in bio-
mass as productivity increases (Oksanen et al. 1981).
Alternatively, communities could instead be regulated by
bottom-up processes in which increases in productivity in-
crease the density of all trophic levels (Polis and Strong
1996). Constitutive plant defenses are considered a potential
driver of bottom-up regulation (Polis and Strong 1996), which
partially explains why antipredator responses could also in-
duce these dynamics. However, until now, there has been no
indication that top-down control is more likely in mobile
predator–dominated communities than in sit-and-wait
predator–dominated communities. Therefore, our results
show that foraging mode may be closely linked to classical
trophic cascades (sensu Strong 1992).

Implications for invasive species

Changes in antipredator behavior can be induced via introduc-
tion of invasive species. Introduced predators can be more
dangerous than native predators if they do not elicit proper
antipredator responses in their prey (Cox and Lima 2006;
Sih et al. 2010). Depending on the resident predator commu-
nity, introduced predators could be completely novel to the
environment (Fritts and Rodda 1998) or could be an addition
to a mixed community of native and previously established
introduced predators (Grosholz et al. 2000; Blumstein 2006;
Ferrari et al. 2015). These alternative communities combined
with the potential loss of naiveté over time (Carthey and
Banks 2016) create a gradient of prey responses from com-
plete naiveté to effective invasive predator recognition
(Carthey and Blumstein 2018). Therefore, the degree of anti-
predator behavioral expression can be directly influenced by
the degree of prey naiveté within a community.

This model provides an alternative mechanism behind the
often anecdotal observation of invasive species booms and
busts (Simberloff 2013). As seen in Sih et al. (2010), newly
introduced invasive species may not be recognized by their
prey or may not recognize their own predators. Previous the-
ories behind boom-bust dynamics state that invasive species
booms could be caused by predators not identifying the invad-
er, thus allowing the invader to reach high densities, and
that subsequent busts would be caused by predators
switching to prefer the invader, thereby reducing invader
density (Sih et al. 2010).

In our model, an invasive species could either be the pred-
ator or the prey. If we consider a naïve invasive prey with
small antipredator sensitivity, then our model indicates this
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population would be more susceptible to oscillations because
the population is unable to effectively respond to changes in
predator density. This implies that boom-bust dynamics in
invasive species need not be limited to one boom and one
bust, but that as long as invaders lack effective antipredator
response, oscillations in an introduced prey population could
occur. Our model also predicts that these oscillatory dynamics
would be more likely with active predators and at higher re-
source levels. An invasive predator would have much the
same effect on native prey provided that native prey remain
naïve and are unable to effectively alter their behavior.

Predator life history as an explanation for cyclical
dynamics

There are many classic examples of cycles in predator-prey
systems (e.g., Elton and Nicholson 1942; McLaren and
Peterson 1994). Typically, these cycles exist when specialist
predators that focus on only a few prey species exhibit delayed
density dependence (Hastings 1997; Barraquand et al. 2017).
Our model adds an important insight into this interaction such
that specialist predators become a necessary, but not sufficient,
prerequisite for population cycles. The predators in our model
only have one prey; thus, they are always a specialist predator.
However, in our case, when prey exhibit antipredator behav-
ior, a specialist predator must also be highly mobile in order to
see cyclical behavior.

Cyclical behavior is unlikely in sit-and-wait predator–
dominated communities because these predators rely on prey
movement to maintain high encounter rates. The prey re-
sponses to sit-and-wait predators create a negative feedback
loop that dampens rates of predator increase and prevents
predator densities from overshooting the equilibrium. Our the-
oretical results parallel empirical results in which cues pro-
duced by sit-and-wait predators are more reliable and more
likely to induce antipredator behavior than the cues produced
by mobile predators (Schmitz 2008; Reynolds and Bruno
2013). In light of our results, we hypothesize that sit-and-
wait predators induce greater antipredator behavior and that
the antipredator behavior they elicit is more likely to lead to a
stable community.

A brief survey of the literature on population cycles sup-
ports our hypothesis. Many of the most well-known popula-
tion cycles occur in populations at northern latitudes with
mobile predators. The vole cycles (Microtus sp.) of
northern Fennoscandia are thought to occur from an
increase in specialist predators relative to southern pop-
ulations (Klemola et al. 2002), such as the highly mo-
bile least weasel (Mustela nivalis; Oksanen and Henttonen
1996). Similar cycles in the lepidopteran moth (Epirrita
autumnata) are thought to occur from highly mobile parasitoid
wasps in northern Fennoscandia (Ruohomäki et al. 2000;
Klemola et al. 2002). Conversely, we found relatively few

long-term studies of sit-and-wait predators (but see Packer
et al. 2005) and none with predator-prey cycling. Furthermore,
the analyses of the Global Population Dynamics Database found
very few cyclical sit-and-wait predator populations (Kendall
et al. 1998; Louca and Doebeli 2015).

It is important to note that while sit-and-wait predators may
be less likely to undergo population cycles, cycles could still
occur. For example, a long-term study of an African lion
(Panthera leo) population, a known ambush predator, shows
no evidence of intrinsic predator-prey cycles between lions
and their ungulate prey. Though cyclical behavior does exist,
it is caused by large changes to the Serengeti ecology rather
than predator-prey cycles (Packer et al. 2005). It is possible
that more long-term studies of sit-and-wait predators may find
more evidence for cyclicity. However, our model suggests that
the population cycles that sit-and-wait predator–dominated
communities exhibit are more likely to be caused by environ-
mental factors.
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